| 1. | Experiments results were not different . too much doping content will destroy the materials properties 确定最佳掺杂含量是各种电子功能材料科学研究当中最基本的内容之一。 |
| 2. | No second phase exists when bt _ 4 doped with nd and the dielectric properties increased when the doping content is small Bt _ 4掺杂nd没有第二相生成且掺杂量较少时能提升样品的介电性能。 |
| 3. | The quantitative theory of optimum doping content of electrical film materials was introduced , and an expression was obtained 这一结论是根据现有的初步的试验结果得出的,关于这一问题,还有待于进一步的深入研究。 |
| 4. | The problem of optimum doping content must imply some rules undiscovered and the optimum doping content may be a very fundamental problem almost in all the fields of research work for material science 本研究工作对研究发光材料的掺杂改性以及掺杂对材料性能影响的机理认识有着一定的理论意义和实用价值。 |
| 5. | Results show that the increase of semiconductor - metal phase transition temperature and the decrease extent of resistance is linear to zr ~ ( 4 + ) doping content , while the hysteresis width of vo _ 2 thin film fluctuates with zr ~ ( 4 + ) doping content 实验结果表明:随zr含量的增加, vo _ 2薄膜的半导体-金属转变温度和电阻突变数量级呈线性下降,同时,随掺杂量的增加, vo _ 2薄膜的热滞宽度的变化规律是先减小后增大。 |
| 6. | Along with the doping content increases , the dielectric constant initially increased and then decreased . the dielectric loss was on the contrary . 4 . bt _ 4 doped with bi _ 2o _ 3 or v2o5 got a lower sintering temperature . a babi4ti4o15 phase raised when bi _ 2o _ 3 was doped and the dielectric properties ruined 3 . bst中掺杂zro _ 2 ,晶粒尺寸增大,掺杂量较大时会产生第二相bazro _ 3 ,介电常数随掺杂量的增大呈现先增大后减小的趋势,介电损耗则先减小后增大。 |
| 7. | There are some creations in this paper . first , the relationship among the physical property , crystal structure , preparation method and doping content is established to be a parabola equation . the extreme value of this equation determines the optimum doping content 本论文工作的创新点在于:从半导体发光材料的晶体结构出发,建立起材料的物理性能、晶体结构中原子配位数、最佳掺杂含量和制备方法之间的关系,归纳出材料掺杂的最佳掺杂含量的理论表达式。 |
| 8. | Second , in luminescence materials hole or electron concentration will change with the doping content . so we expand the hole or electron concentration in taylor expansion and calculat the optimum doping contents . for several semiconductor materials such as zns : mn , silicon doped er and gaas , gap , gan doped different materials , we calculat their optimum doping contents which arc close to some experimental results 应用该表达式,给出了各种不同的制备方法zns掺mn 、硅基掺铒、以及gaas 、 gap 、 gan掺不同元素制出的发光材料,对最佳掺杂含量进行了理论上的计算,理论计算值与实验数据相符合。 |
| 9. | In this paper , we analyze the doping experiments of several representational semiconductors and conclude the theoretical formula from different aspects . optimum doping contents in various materials of semiconductor materials are calculated . the quantitative calculation values are in accordance with the experimental results 本论文工作是在对电子薄膜材料掺杂的研究基础之上,主要是对几种有代表性的半导体发光材料的掺杂进行分析,从不同角度对最佳掺杂含量的理论进行探索,并应用理论公式对发光材料最佳掺杂含量进行理论计算,使理论计算出的最佳掺杂含量与实验数据相符合。 |
| 10. | The ionic conductivities of lsgm enhanced with the measuring temperature . based on the results of electrical measurements , the relative contribution of the grain interior and grin boundaries to the overall resistance was discussed in detail in relation with the grain boundary effect and mg doping contents . the grain boundary effect decreased monotonously with the increase of mg doping in the range of testing temperature 在相同测试温度下, lsgm体系离子电导率随着镁含量的增加而增大,在y = 0 . 2时达到最大值,此后电导率随镁含量的增加而降低;在测试温度范围内,所有lsgm样品的离子电导率均随温度的升高而增加。 |